Add like
Add dislike
Add to saved papers

Reduction in thermal stress of marine copepods after physiological acclimation.

We studied the phenotypic response to temperature of the marine copepod Paracartia grani at the organismal and cellular levels. First, the acute (2 days) survival, feeding and reproductive performances at 6-35°C were determined. Survival was very high up to ca. 30°C and then dropped, whereas feeding and fecundity peaked at 23-27°C. An acclimation response developed after longer exposures (7 days), resulting in a decline of the biological rate processes. As a consequence, Q10 coefficients dropped from 2.6 to 1.6, and from 2.7 to 1.7 for ingestion and egg production, respectively. Due to the similarity in feeding and egg production thermal responses, gross-growth efficiencies did not vary with temperature. Respiration rates were less sensitive (lower Q10 ) and showed an opposite pattern, probably influenced by starvation during the incubations. The acclimation response observed in the organismal rate processes was accompanied by changes in body stoichiometry and in the antioxidant defense and cell-repair mechanisms. Predictions of direct effects of temperature on copepod performance should consider the reduction of Q10 coefficients due to the acclimation response. Copepod population dynamic models often use high Q10 values and may overestimate thermal effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app