Add like
Add dislike
Add to saved papers

Tangent functional canonical correlation analysis for densities and shapes, with applications to multimodal imaging data.

It is quite common for functional data arising from imaging data to assume values in infinite-dimensional manifolds. Uncovering associations between two or more such nonlinear functional data extracted from the same object across medical imaging modalities can assist development of personalized treatment strategies. We propose a method for canonical correlation analysis between paired probability densities or shapes of closed planar curves, routinely used in biomedical studies, which combines a convenient linearization and dimension reduction of the data using tangent space coordinates. Leveraging the fact that the corresponding manifolds are submanifolds of unit Hilbert spheres, we describe how finite-dimensional representations of the functional data objects can be easily computed, which then facilitates use of standard multivariate canonical correlation analysis methods. We further construct and visualize canonical variate directions directly on the space of densities or shapes. Utility of the method is demonstrated through numerical simulations and performance on a magnetic resonance imaging dataset of glioblastoma multiforme brain tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app