Add like
Add dislike
Add to saved papers

Identification of Two Non-Peptidergic Small Molecule Inhibitors of CBX2 Binding to K27 Trimethylated Oligonucleosomes.

SLAS Discovery 2022 July
The dysregulation of the PRC1/2 complex plays a key role in lineage plasticity in prostate cancer and may be required to maintain neuroendocrine phenotype. [1] CBX2, a key component of the canonical PRC1 complex, is an epigenetic reader, recognizing trimethylated lysine on histone 3 (H3K27me3) [2] and is overexpressed in metastatic neuroendocrine prostate cancer. [3,4] We implemented a screening strategy using nucleosome substrates to identify inhibitors of CBX2 binding to chromatin. Construct design and phosphorylation state of CBX2 were critical for successful implementation and execution of an HTS library screen. A rigorous screening funnel including counter and selectivity assays allowed us to quickly focus on true positive hit matter. Two distinct non-peptide-like chemotypes were identified and confirmed in orthogonal biochemical and biophysical assays demonstrating disruption of CBX2 binding to nucleosomes and direct binding to purified CBX2, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app