Add like
Add dislike
Add to saved papers

A novel whisker sensor with variable detection range for object positioning.

The design of a whisker sensor, inspired by mammalian whisker characteristics, is presented in this paper. It uses a novel spring structure to transfer the deformation generated by the whisker tip when it touches an object at the base, which drives the permanent magnet installed at the base to change its position. It achieves precise positioning of the object by using the magnetic induction intensity data output from the Hall sensor MLX90393. Based on the results of the finite element model analysis, the detection range of the whisker sensor can be expanded by replacing the artificial whisker material and selecting a permanent magnet of a suitable size. Calibration experiments and positioning tests were conducted on the sensor. The experimental results showed that the detection radius of the sensor was 24, 30, 33, and 39 mm for the carbon fiber, acrylic, acrylonitrile butadiene styrene plastic (ABS), and nylon whiskers, respectively, when they were matched with a NdFeB annular permanent magnet with an aperture of 3 mm and a thickness of 3 mm. The sensor is small and simple to manufacture with good sensitivity, linearity, hysteresis, and repeatability. The maximum positioning errors of the X and Y positions in the detection plane of the sensor were within ±1.3 mm, and the positioning was accurate. The sensor can be used to identify the shape of an object.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app