Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular brain (micro report) oxytocin ameliorates impaired social behavior in a mouse model of 3q29 deletion syndrome.

Molecular Brain 2022 March 29
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by specific social symptoms, restricted interests, stereotyped repetitive behaviors, and delayed language development. The 3q29 microdeletion (3q29del), a recurrent copy number variant, confers a high risk for ASD and schizophrenia, and serves as an important pathological model for investigating the molecular pathogenesis of a large number of neurodevelopmental and psychiatric conditions. Recently, mouse models carrying a deletion of the chromosomal region corresponding to the human 3q29 region (Df/+ mice) were generated and demonstrated neurodevelopmental and psychiatric conditions associated behavioral abnormalities, pointing to the relevance of Df/+ mice as a model for these conditions with high construct and face validity. Currently, the molecular pathogenesis of these behavioral phenotypes in Df/+ mice remains unclear. The oxytocin (OXT) system plays a central role in social behavior across species and has a potential role in ASD. In this study, to elucidate the molecular mechanisms behind impaired social behavior in Df/+ mice, we investigated the possible involvement of OXT signaling in impaired social behavior in Df/+ mice. We demonstrated that OXT administration restored the impaired social behavior in Df/+ mice. We also demonstrated that the number of OXT-positive cells in the paraventricular nucleus (PVN) was significantly lower in Df/+ mice than in wild-type (WT) littermates. Consistent with this, the level of OXT peptide in the cerebral cortex of Df/+ mice was lower than in WT littermates. Our study may provide important insights into the molecular pathophysiological basis of neurodevelopmental and psychiatric conditions, including ASD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app