Add like
Add dislike
Add to saved papers

Effect of RNA Interference Inhibiting the Expression of the FUBP1 Gene on Biological Function of Gastric Cancer Cell Line SGC7901.

BACKGROUND: The research aimed to observe the effect of gene silencing on the proliferation, migration, cell cycle, apoptosis, and other biological functions of human gastric cancer cells with RNA interference inhibiting the expression of the far upstream element-binding protein 1 (FUBP1) in the gastric cancer cell line SGC7901.

METHODS: The shRNA lentivirus vector of the target gene FUBP1 was constructed to transfect the gastric cancer cell line SGC7901. The qRT-PCR and western blot assays were used to detect the expression levels of FUBP1 mRNA and protein in the gastric cancer cells. The CCK-8 assay was used to detect the proliferation of gastric cancer cells. The cell scratch assay and the transwell assays were used to detect the migration of gastric cancer cells. Flow cytometry was used to detect cell cycle distribution and apoptosis.

RESULTS: The shRNA lentiviral vector of FUBP1 was successfully transfected into the gastric cancer cell line SGC7901, and could effectively reduce the expression of mRNA and protein of FUBP1. The silencing of FUBP1 could inhibit the gastric cancer cell proliferation and affect the distribution of the cell cycle, resulting in S-phase arrest and cell growth inhibition. However, FUBP1 silencing has no significant effect on cell apoptosis and migration.

CONCLUSIONS: The expression of FUBP1 can be inhibited specifically and effectively by RNA interference technology, which can significantly affect the biological function of the gastric cancer cell line SGC7901.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app