Add like
Add dislike
Add to saved papers

Enhanced removal efficiency of sulfamethoxazole by acclimated microalgae: Tolerant mechanism, and transformation products and pathways.

Bioresource Technology 2021 December 2
This study utilized sulfamethoxazole (SMX) acclimatization to enhance the tolerance and biodegradation capacity of Chlorella vulgaris. Compared to wild C. vulgaris, the growth inhibition and oxidative damage induced by SMX evidently decreased in acclimated C. vulgaris, and meanwhile photosynthetic and antioxidant activities were significantly promoted. The physiological analyses with the aid of principal component analysis revealed the increase of catalase and glutathione reductase activities was the critical tolerant mechanism of acclimated C. vulgaris. As the consequence, the acclimated C. vulgaris exhibited enhanced efficiency and (pseudo-first-order) kinetic rate for removal of SMX. The distribution analysis of residual SMX demonstrated the biodegradation was the major removal mechanism of SMX by C. vulgaris, while bioadsorption and bioaccumulation made pimping contributions. During the degradation process of SMX, nine transformation products (TPs) were identified. Based on the identified TPs, a possible transformation pathway was proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app