Add like
Add dislike
Add to saved papers

Machine Learning and Intracranial Aneurysms: From Detection to Outcome Prediction.

Machine learning (ML) is a rapidly rising research tool in biomedical sciences whose applications include segmentation, classification, disease detection, and outcome prediction. With respect to traditional statistical methods, ML algorithms have the potential to learn and improve their predictive performance when fed with large data sets without the need of being specifically programmed. In recent years, this technology has been increasingly applied for tackling clinical issues in intracranial aneurysm (IA) research. Several studies attempted to provide reliable models for enhanced aneurysm detection. Convolutional neural networks trained with variable degrees of human interaction on data from diverse imaging modalities showed high sensitivity in aneurysm detection tasks, also outperforming expert image analysis. Algorithms were also shown to differentiate ruptured from unruptured IAs, with however limited clinical relevance. For prediction of rupture and stability assessment, ML was preliminarily shown to achieve better performance compared to conventional statistical methods and existing risk scores. ML-based complication and functional outcome prediction in the event of SAH have been more extensively reported, in contrast with periprocedural outcome investigation in unruptured IA patients. ML has the potential to be a game changer in IA patient management. Currently clinical translation of experimental results is limited.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app