Journal Article
Review
Add like
Add dislike
Add to saved papers

Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials.

Bacillus subtilis is a commonly used commercial specie with broad applications in the fields of bioengineering and biotechnology. B. subtilis is capable of producing both biofilms and spores. Biofilms are matrix-encased multicellular communities that comprise various components including exopolysaccharides, proteins, extracellular DNA, and poly-γ-glutamic acid. These biofilms resist environmental conditions such as oxidative stress and hence have applications in bioremediation technologies. Furthermore, biofilms and spores can be engineered through biotechnological techniques for environmentally-friendly and safe production of bio-products such as enzymes. The ability to withstand with harsh conditions and producing spores makes Bacillus a suitable candidate for surface display technology. In recent years, the spores of such specie are widely used as it is generally regarded as safe to use. Advances in synthetic biology have enabled the reprogramming of biofilms to improve their functions and enhance the production of value-added products. Globally, there is increased interest in the production of engineered biosensors, biocatalysts, and biomaterials. The elastic modulus and gel properties of B. subtilis biofilms have been utilized to develop living materials. This review outlines the formation of B. subtilis biofilms and spores. Biotechnological engineering processes and their increasing application in bioremediation and biocatalysis, as well as the future directions of B. subtilis biofilm engineering, are discussed. Furthermore, the ability of B. subtilis biofilms and spores to fabricate functional living materials with self-regenerating, self-regulating and environmentally responsive characteristics has been summarized. This review aims to resume advances in biological engineering of B. subtilis biofilms and spores and their applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app