Add like
Add dislike
Add to saved papers

CoFe alloy embedded in N-doped carbon nanotubes derived from triamterene as a highly efficient and durable electrocatalyst beyond commercial Pt/C for oxygen reduction.

For development of green and sustainable energy, it is of importance to search highly efficient and low-cost electrocatalysts of oxygen reduction reaction (ORR) in energy conversion devices. Herein, CoFe alloyed nanocrystals embedded in N-doped bamboo-like carbon nanotubes (CoFe@NCNTs) were facilely synthetized by one-step co-pyrolysis with the mixture of triamterene, metal chlorides and graphitic carbon nitride (g-C3 N4 ). The resultant CoFe@NCNTs exhibited excellent ORR activity with the positive shifts in the onset potential (Eonset  = 0.97 V) and half-wave potential (E1/2  = 0.88 V), outperforming commercial Pt/C (Eonset  = 0.96 V; E1/2  = 0.84 V). Compared to metal organic frameworks (MOFs)-based strategy for synthesis of low-cost carbon-based ORR catalysts, this method is simple and convenient, coupled by avoiding the complicated synthesis of MOFs and its ligands. This work provides a promising route to fabricate advanced transition-metal-based carbon catalysts in the researches correlated with energy conversion devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app