Journal Article
Review
Add like
Add dislike
Add to saved papers

Methods for Chromosome Doubling.

The completely homozygous genetic background of doubled haploids (DHs) has many applications in breeding programs and research studies. Haploid induction and chromosome doubling of induced haploids are the two main steps of doubled haploid creation. Both steps have their own complexities. Chromosome doubling of induced haploids may happen spontaneously, although usually at a low rate. Therefore, artificial/induced chromosome doubling of haploid cells/plantlets is necessary to produce DHs at an acceptable level. The most common method is using some mitotic spindle poisons that target the organization of the microtubule system. Colchicine is a well-known and widely used antimitotic. However, there are substances alternative to colchicine in terms of efficiency, toxicity, safety, and genetic stability, which can be applied in in vitro and in vivo pathways. Both pathways have their own advantages and disadvantages. However, in vitro-induced chromosome doubling has been much preferred in recent years, maybe because of the dual effect of antimitotic agents (haploid induction and chromosome doubling) in just one step, and the reduced generation of chimeras. Plant genotype, the developmental stage of initial haploids, and type-concentration-duration of application of antimitotic agents, are top influential parameters on chromosome doubling efficiency. In this review, we highlight different aspects related to antimitotic agents and to plant parameters for successful chromosome doubling and high DH yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app