Add like
Add dislike
Add to saved papers

A Kinetic Photometric Assay for the Quantification of the Open-Chain Content of Aldoses.

Aldoses exist predominantly in the cyclic hemiacetal form, which is in equilibrium with the open-chain aldehyde form. The small aldehyde content hampers reactivity when chemistry addresses the carbonyl moiety. This low concentration of the available aldehyde is generally difficult to ascertain. Herein, we demonstrate a new kinetic determination of the (minute) open-chain content (OCC) of aldoses. This kinetic approach exploits the aldehyde-selectivity of 2-aminobenzamidoxime (ABAO), which furnishes a strongly UV-active adduct. Simple formation curves can be measured in a photometer or plate reader for high-throughput screening. Under pseudo-first order kinetics, these curves correlate with a prediction model yielding the relative OCC. The OCCs of all parent aldoses (pentoses and hexoses) were determined referencing against the two tetroses with exceptionally high OCCs and were in very good agreement with literature data. Additionally, the assay was extended towards higher-carbon sugars with unknown OCC and also applied to rationalise a lack of reactivity observed in a recent synthetic investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app