Add like
Add dislike
Add to saved papers

Facilely Prepared Cl-Doped Graphene as an Efficient Anode for the Electrochemical Catalytic Degradation of Acetaminophen.

The application of electrochemical catalytic oxidation in wastewater treatment with powerful Cldoped graphene as an anode has been discussed as a novel approach to degrade acetaminophen effectively. The characteristics of Cl-doped graphene that were related to Cl loading content and microscopic morphology were analyzed by using several instruments, and the defects created by Cl doping were identified. Quenching experiments and electron paramagnetic resonance detection were proposed to clarify the mechanism underlying the production of active free radicals by Cldopedgraphene. The degradation results indicated that efficiency increased with the percentage of Cl atoms doped into the graphene. The best degradation efficiency of acetaminophen could reach 98% when Cl-GN-12 was used. In the process of electrocatalytic oxidation, O•- ₂, and active chlorine, as the main active species, persistently attacked acetaminophen into open-ring intermediates, such as 4-chlororesorcinol, and finally into CO₂ and H²O.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app