Journal Article
Review
Add like
Add dislike
Add to saved papers

PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs.

The vast majority of currently marketed drugs rely on small molecules with an 'occupancy-driven' mechanism of action (MOA). Therefore, the efficacy of these therapeutics depends on a high degree of target engagement, which often requires high dosages and enhanced drug exposure at the target site, thus increasing the risk of off-target toxicities (Churcher, 2018 [1]). Although small molecule drugs have been successfully used as treatments for decades, tackling a variety of disease-relevant targets with a defined binding site, many relevant therapeutic targets remain challenging to drug due, for example, to lack of well-defined binding pockets or large protein-protein interaction (PPI) interfaces which resist interference (Dang et al., 2017 [2]). In the quest for alternative therapeutic approaches to address different pathologies and achieve enhanced efficacy with reduced side effects, ligand-induced targeted protein degradation (TPD) has gained the attention of many research groups both in academia and in industry in the last two decades. This therapeutic modality represents a novel paradigm compared to conventional small-molecule inhibitors. To pursue this strategy, heterobifunctional small molecule degraders, termed PROteolysis TArgeting Chimeras (PROTACs) have been devised to artificially redirect a protein of interest (POI) to the cellular protein homeostasis machinery for proteasomal degradation (Chamberlain et al., 2019 [3]). In this chapter, the development of PROTACs will first be discussed providing a historical perspective in parallel to the experimental progress made to understand this novel therapeutic modality. Furthermore, common strategies for PROTAC design, including assays and troubleshooting tips will be provided for the reader, before presenting a compendium of all PROTAC targets reported in the literature to date. Due to the recent advancement of these molecules into clinical trials, consideration of pharmacokinetics and pharmacodynamic properties will be introduced, together with the biotech landscape that has developed from the success of PROTACs. Finally, an overview of subsequent strategies for targeted protein degradation will be presented, concluding with further scientific quests triggered by the invention of PROTACs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app