Add like
Add dislike
Add to saved papers

Synthetic promoters from blueberry red ringspot virus (BRRV).

Planta 2021 May 16
MAIN CONCLUSION: We analyzed the synthetic full-length transcript promoter of Blueberry red ringspot virus (BRRV) and developed two chimeric promoters (MBR3 and FBR3). Transcriptional activities of these chimeric promoters were found equivalent to that of the CaMV35S2 promoter. Chimeric promoters driven plant-derived PaDef protein showed high antimicrobial activities against several pathogens. Blueberry red ringspot virus (BRRV) is a pararetrovirus under the genus, Soymovirus belongs to the Caulimoviridae family. We have made a synthetic version of the BRRV-Flt promoter and analyzed its activity in detail. A 372 bp promoter fragment BR3 (- 212 to + 160) showed the strongest transcriptional activity compared with other fragments in both transient and transgenic assays; its activity was found near equivalent to that of the CaMV35S promoter. We constructed two chimeric promoters; MBR3 and FBR3 by fusing the UASs (Upstream activation sequences) of Mirabilis mosaic virus (MUAS; - 297 to - 38; 335 bp) and Figwort mosaic virus (FUAS; - 249 to - 54; 303 bp) respectively to the core promoter domain of BR3 (BR3; - 212 to + 160; 372 bp). The activities of MBR3 and FBR3 promoters were found equivalent to that of the activity of the CaMV35S2 promoter and approximately 4.0 (four) times stronger than that of the CaMV35S promoter. Histochemical and fluorometric GUS assays confirmed the above observation. The transcriptional efficacies of these recombinant promoters were tested by evaluating the antibacterial and antifungal activities of recombinant plant-derived antimicrobial peptide Persea americana var. drymifolia defensin (PaDef) driven under these promoters. Bioassays showed promising antifungal activities of the plant made PaDef against Alternaria alternata and antibacterial property against Gram-positive (S. aureus and R. fascians) and Gram-negative bacteria (E. coli and P. aeruginosa). Based upon the above results, MBR3 and FBR3 could be useful promoters for plant genetic engineering and can become useful substitutes for the widely used CaMV35S2 promoter in plant biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app