Add like
Add dislike
Add to saved papers

Cell-based actin polymerization assay to analyze chemokine inhibitors.

Chemokines play an important role in various diseases as signaling molecules for immune cells. Therefore, the inhibition of the chemokine-receptor interaction and the characterization of potential inhibitors are important steps in the development of new therapies. Here, we present a new cell-based assay for chemokine-receptor interaction, using chemokine-dependent actin polymerization as a readout. We used interleukin-8 (IL-8, CXCL8) as a model chemokine and measured the IL-8-dependent actin polymerization with Atto565-phalloidin by monitoring the fluorescence intensity in the cell layer after activation with IL-8. This assay needs no transfection, is easy to perform and requires only a few working steps. It can be used to confirm receptor activation and to characterize the effect of chemokine receptor antagonists. Experiments with the well-known CXCR1/2 inhibitor reparixin confirmed that the observed increase in fluorescence intensity is a result of chemokine receptor activation and can be inhibited in a dose-dependent manner. With optimized parameters, the difference between positive and negative control was highly significant and statistical Z´-factors of 0.4 were determined on average.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app