Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Knockout of c-Cbl slows EGFR endocytic trafficking and enhances EGFR signaling despite incompletely blocking receptor ubiquitylation.

Epidermal growth factor receptor (EGFR) activity is necessary and sufficient for corneal epithelial homeostasis. However, the addition of exogenous Epidermal Growth Factor (EGF) does not reliably restore the corneal epithelium when wounded. This is likely due to high levels of endogenous EGF in tear fluid as well as desensitization of the EGFR following ligand stimulation. We hypothesize that preventing receptor downregulation is an alternative mechanism to enhance EGFR signaling and promote the restoration of compromised corneas. Ligand-dependent EGFR ubiquitylation is associated with the targeted degradation of the receptor. In this manuscript, we determine whether knockout of c-Cbl, an E3 ubiquitin ligase that ubiquitylates the EGFR, is sufficient to prolong EGFR phosphorylation and sustain signaling. Using CRISPR/Cas9 gene editing, we generated immortalized human corneal epithelial (hTCEpi) cells lacking c-Cbl. Knockout (KO) cells expressed the other E3 ligases at the same levels as the control cells, indicating other E3 ligases were not up-regulated. As compared to the control cells, EGF-stimulated EGFR ubiquitylation was reduced in KO cells, but not completely abolished. Similarly, EGF:EGFR trafficking was slowed, with a 35% decrease in the rate of endocytosis and a twofold increase in the receptor half-life. This resulted in a twofold increase in the magnitude of EGFR phosphorylation, with no change in duration. Conversely, Mitogen Activating Protein Kinase (MAPK) phosphorylation did not increase in magnitude but was sustained for 2-3 h as compared to control cells. We propose antagonizing c-Cbl will partially alter receptor ubiquitylation and endocytic trafficking but this is sufficient to enhance downstream signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app