Add like
Add dislike
Add to saved papers

Statistical Methods for Quantifying Between-study Heterogeneity in Meta-analysis with Focus on Rare Binary Events.

Meta-analysis, the statistical procedure for combining results from multiple independent studies, has been widely used in medical research to evaluate intervention efficacy and drug safety. In many practical situations, treatment effects vary notably among the collected studies, and the variation, often modeled by the between-study variance parameter τ 2 , can greatly affect the inference of the overall effect size. In the past, comparative studies have been conducted for both point and interval estimation of τ 2 . However, most are incomplete, only including a limited subset of existing methods, and some are outdated. Further, none of the studies covers descriptive measures for assessing the level of heterogeneity, nor are they focused on rare binary events that require special attention. We summarize by far the most comprehensive set including 11 descriptive measures, 23 estimators, and 16 confidence intervals. In addition to providing synthesized information, we further categorize these methods according to their key features. We then evaluate their performance based on simulation studies that examine various realistic scenarios for rare binary events, with an illustration using a data example of a gestational diabetes meta-analysis. We conclude that there is no uniformly "best" method. However, methods with consistently better performance do exist in the context of rare binary events, and we provide practical guidelines based on numerical evidences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app