Add like
Add dislike
Add to saved papers

Raman spectroscopy based characterization of cow, goat and buffalo fats.

In this study, Raman spectroscopy has been utilized to characterize buffalo, cow and goat fat samples by using laser wavelengths at 532 and 785 nm as excitation sources. It has been observed that Raman spectra of cow fats contain beta-carotene at 1006, 1156 and 1520 cm-1 , which are absent in buffalo and goat fats. The Raman bands at 1060, 1080, 1127 and 1440 cm-1 represent the saturated fatty acids, and their concentration is found relatively higher in buffalo fats than cow and goat. Similarly, the Raman band at 1650 cm-1 represent conjugated linoleic acid (CLA) which shows its relatively higher concentration in goat fats than cow and buffalo. The Raman band at 1267 cm-1 represent unsaturated fatty acids, which shows its relatively higher concentration in goat fats than cow and buffalo. The Raman bands at 838, 870 and 1060 cm-1 depict relatively higher concentration of vitamin D in buffalo fats than cow and goat. Principal component analysis has been applied to highlight the differences among three fat types which based upon the concentration of fatty acids, CLA and vitamin D.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app