Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Investigating the regional effect of the chemical shift displacement artefact on the J-modulated lactate signal at ultra high-field.

NMR in Biomedicine 2021 Februrary
The present work aims to show the applicability of an analytical model for the optimisation of the STEAM sequence timing parameters for lactate detection at ultra high-field. The effects of the chemical shift displacement artefact on the J-modulated signal for a weakly-coupled spin system were considered in the three applied directions of field gradients and the product operator formalism was used to obtain expressions for the signal modulation in each compartment of the excited volume. The validity of this model was demonstrated experimentally at 7 T in a phantom and acquisitions with optimised parameters were performed on a healthy volunteer. The spectra acquired with TE = 144 ms with the optimised mixing time and TE = 288 ms showed easily detectable lactate peaks in the normal human brain. Additionally, the acquisition with the longer TE resulted in a spectrum with less lipid/macromolecular contamination. The simulations shown here demonstrated that the proposed analytical model is suitable for correctly predicting the resulting lactate signal. With the optimised parameters, it was possible to use a simple sequence with sufficient signal-to-noise ratio to reliably distinguish lactate from overlapping resonances in a healthy brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app