Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Micellization of coenzyme Q by the fungicide caspofungin allows for safe intravenous administration to reach extreme supraphysiological concentrations.

Redox Biology 2020 September
Coenzyme Q10 (CoQ10 ; also known as ubiquinone) is a vital, redox-active membrane component that functions as obligate electron transporter in the mitochondrial respiratory chain, as cofactor in other enzymatic processes and as antioxidant. CoQ10 supplementation has been widely investigated for treating a variety of acute and chronic conditions in which mitochondrial function or oxidative stress play a role. In addition, it is used as replacement therapy in patients with CoQ deficiency including inborn primary CoQ10 deficiency due to mutations in CoQ10 -biosynthetic genes as well as secondary CoQ10 deficiency, which is frequently observed in patients with mitochondrial disease syndrome and in other conditions. However, despite many tests and some promising results, whether CoQ10 treatment is beneficial in any indication has remained inconclusive. Because CoQ10 is highly insoluble, it is only available in oral formulations, despite its very poor oral bioavailability. Using a novel model of CoQ-deficient cells, we screened a library of FDA-approved drugs for an activity that could increase the uptake of exogenous CoQ10 by the cell. We identified the fungicide caspofungin as capable of increasing the aqueous solubility of CoQ10 by several orders of magnitude. Caspofungin is a mild surfactant that solubilizes CoQ10 by forming nano-micelles with unique properties favoring stability and cellular uptake. Intravenous administration of the formulation in mice achieves unprecedented increases in CoQ10 plasma levels and in tissue uptake, with no observable toxicity. As it contains only two safe components (caspofungin and CoQ10 ), this injectable formulation presents a high potential for clinical safety and efficacy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app