Add like
Add dislike
Add to saved papers

A Data-Driven Approach to Transfer Function Analysis for Superior Discriminative Power: Optimized Assessment of Dynamic Cerebral Autoregulation.

Transfer function analysis (TFA) is extensively used to assess human physiological functions. However, extracting parameters from TFA is not usually optimized for detecting impaired function. In this study, we proposed to use data-driven approaches to improve the performance of TFA in assessing blood flow control in the brain (dynamic cerebral autoregulation - dCA). Data were collected from two distinct groups of subjects deemed to have normal and impaired dCA. Continuous arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) were simultaneously recorded for approximately 10 mins in 82 subjects (including 41 healthy controls) to give 328 labeled samples of the TFA variables. The recordings were further divided into 4,294 short data segments to generate 17,176 unlabeled samples of the TFA variables. We optimized TFA post-processing with a generic semi-supervised learning strategy and a novel semi-supervised stacked ensemble learning (SSEL) strategy for classification into normal and impaired dCA. The generic strategy led to a performance with no significant difference to that of the conventional dCA analysis methods, whereas the proposed new strategy boosted the performance of TFA to an accuracy of 93.3%. To our knowledge, this is the best dCA discrimination performance obtained to date and the first attempt at optimizing TFA through machine learning techniques. Equivalent methods can potentially also be applied to assessing a wide spectrum of other human physiological functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app