Add like
Add dislike
Add to saved papers

Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications.

Optics Letters 2020 July 2
This Letter studies a photonic approach for chaotic microwave generation through destabilization of period-one (P1) nonlinear dynamics in a semiconductor laser subject to intensity-modulated (IM) optical injection. Chaos can be excited when the modulation sideband perturbation carried by the IM optical injection is a few gigahertz higher than the lower oscillation sideband of the P1 dynamics. As a result, chaotic microwaves with a spectral distribution of more than 50 GHz and a bandwidth of about 33 GHz are generated without any time-delay signature or modulation-induced peak. Such features provide the generated chaotic microwaves with preferable characteristics for radar applications, including high detection resolution, superior detection unambiguity, strong anti-jamming capability, and simultaneous multi-band detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app