Add like
Add dislike
Add to saved papers

Development of Flat Silicon-Based Mesh Lens Arrays for Millimeter and Sub-millimeter Wave Astronomy.

The high sensitivity requirements set by future cosmic microwave background instruments are pushing the current technologies to produce highly performant focal plane arrays with thousands of detectors. The coupling of the detectors to the telescope optics is a challenging task. Current implemented solutions include phased-array antenna-coupled detectors, platelet horn arrays, and lenslet-coupled planar antennas. There are also recent developments of flat graded-index lenses based on etched silicon. However, there are strong requirements in terms of electromagnetic performance, such as coupling efficiency and bandwidth, as well as requirements in terms of easy manufacturing and scalability, and it is very challenging to meet all these requirements with one of the above solutions. Here, we present a novel approach for producing flat metal-mesh lenslet arrays based on devices previously realized using the mesh-filter technology. We have now adapted the polypropylene-based mesh lens design to silicon substrates, thus providing a good mechanical match to the silicon-based detector arrays. The measured performance of prototype pixels operating at millimeter wavelengths is presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app