Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Second heart field-specific expression of Nkx2-5 requires promoter proximal interaction with Srf.

The cardiac homeobox transcription factor Nkx2-5 is a major determinant of cardiac identity and cardiac morphogenesis. Nkx2-5 operates as part of a complex and mutually reinforcing network of early transcription factors of the homeobox, GATA zinc finger and MADS domain families to initiate the program of cardiac development and differentiation, particularly in outflow tract precursor cells in the second heart field (SHF). We have now found evidence for another aspect of cardiac transcription factor cooperativity between Nkx2-5 and the cardiac enriched MADS domain transcription factor Srf. Specifically, Srf interaction with an evolutionarily conserved binding site in the Nkx2-5 CpG island-like proximal promoter is required for cardiac specific expression mediated by an SHF enhancer, and for combinatorial activation of these elements by cardiac transcription factors. These results provide further insight into cooperative gene regulation during cardiogenesis at the level of promoter-enhancer interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app