Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

In situ absorbance measurements: a new means to study respiratory electron transfer in chemolithotrophic microorganisms.

Absorbance measurements on intact chemolithotrophic microorganisms that respire aerobically on soluble iron are described that used a novel integrating cavity absorption meter to eliminate the effects of light scattering on the experimental results. Steady state kinetic measurements on ferric iron production by intact cells revealed that the Michaelis Menten equation described the initial rates of product formation for at least 8 different chemolithotrophic microorganisms in 6 phyla distributed equally among the archaea and the Gram negative and Gram positive eubacteria. Cell-monitored turnover measurements during aerobic respiration on soluble iron by the same 12 intact microorganisms revealed six different patterns of iron-dependent absorbance changes, suggesting that there may be at least six different sets of prosthetic groups and biomolecules that can accomplish aerobic respiration on soluble iron. Detailed kinetic studies revealed that the 3-component iron respiratory chain of Acidithiobacillus ferrooxidans functioned as an ensemble with a single macroscopic rate constant when the iron-reduced proteins were oxidized in the presence of excess molecular oxygen. The principal member of this 3-component system was a cupredoxin called rusticyanin that was present in the periplasm of At. ferrooxidans at an approximate concentration of 350 mg/mL, an observation that provides new insights into the crowded environments in the periplasms of Gram negative eubacteria that conduct electrons across their periplasm. The ability to conduct direct spectrophotometric measurements under noninvasive physiological conditions represents a new and powerful approach to examine the rates and extents of biological events in situ without disrupting the complexity of the live cellular environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app