Add like
Add dislike
Add to saved papers

Mitochondrial DNA mutations in prostate cancer bone metastases.

Prostate cancer is the most common non-skin cancer in men. Those with local or regional disease often have good long-term prognosis, but patients with metastatic disease face high morbidity and mortality. The vast majority of cases with distant spread have some degree of bony involvement. The reason for the disproportionately high percentage of metastasis to bone relative to other metastatic sites remains unclear. A growing body of evidence suggests mitochondrial DNA (mtDNA) is associated with prostate cancer, and the effects of mtDNA on tumor growth may be augmented by the bone microenvironment. Here, we review our latest study analyzing mtDNA mutations in 10 patients with advanced prostate cancer and both bone and soft tissue metastases. This cohort of patients had significantly increased somatic mtDNA mutations in bone metastasis compared to paired primary tumor and soft tissue metastasis. In addition, a recurrent mtDNA mutation at nucleotide position 10398, was exclusively found in bone metastasis in 7 of 10 patients with advanced prostate cancer, with no such mutations found in paired benign prostate, primary tumor, or soft tissue metastasis. We describe the results from this work and review the relevant literature on the role of mitochondrial DNA in prostate cancer bone metastases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app