Add like
Add dislike
Add to saved papers

Kidins220/ARMS Expression Confers Proliferation But Independent of Self-Renewal in Mouse Embryonic Stem Cells.

Embryonic stem cells (ESCs) are characterized by their ability to self-renew and their potential to differentiate into any cell type. Therefore, identification of novel molecular markers to verify the pluripotent status of mouse ESCs (mESCs) is of great significance. Kinase D interacting substrate of 220 kDa (Kidins220)/ankyrin repeat-rich membrane spanning (ARMS) plays a crucial role in the integration of growth factor receptor pathways during embryonic development. However, the role of Kidins220/ARMS in ESCs is still unknown. To elucidate the effects of Kidins220/ARMS on ESCs, we performed a knockdown of the Kidins220/ARMS gene by RNA interference. To our surprise, downregulation of Kidins220/ARMS did not alter the pluripotent state of mESCs. In contrast, it was essential for the proliferation and survival of ESCs. Furthermore, downregulation of the ARMS gene limited the migration of embryoid body cells derived from mESCs. This study indicates novel roles of Kidins220/ARMS in ESCs, which may represent valuable targets for future clinical applications of ESCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app