Add like
Add dislike
Add to saved papers

Continuous 2-D control via state-machine triggered by endogenous sensory discrimination and a fast brain switch.

OBJECTIVE: Brain computer interfacing (BCI) is a promising method to control assistive systems for patients with severe disabilities. However, only a small number of commands (2 to 3) can be discriminated from EEG signals. Recently, we have presented a novel BCI approach that combines an electrotactile menu and a brain switch, which allows the user to trigger many commands robustly and efficiently. However, the commands are timed to periodic tactile cues and this may challenge online control. In the present study, therefore, we implemented and evaluated a novel approach for online closed-loop control using the proposed BCI.

APPROACH: Seven healthy subjects used the novel method to move a cursor in a 2D space. To assure robust control with properly timed commands, the BCI was integrated within a state machine allowing the subject to start the cursor movement in the selected direction and asynchronously stop the cursor. The brain switch was controlled using motor execution (ME) or imagery (MI) and the menu implemented 4 (straight movements) or 8 commands (straight and diagonal movements).

MAIN RESULTS: The results showed a high completion rate of a target hitting task (~95% and ~88% for ME and MI, respectively), with a small number of collisions, when 4-channel control was used. There was no significant difference in outcome measures between MI and ME, and performance was similar for 4 and 8 commands.

SIGNIFICANCE: These results demonstrate that the novel state-based scheme driven by a robust BCI can be successfully utilized for online control. Therefore, it can be an attractive solution for providing the user an online-control interface with many commands, which is difficult to achieve using classic BCI solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app