Add like
Add dislike
Add to saved papers

Endothelium-dependent and endothelium-independent effects of 1-nitro-2-propylbenzene on rat aorta.

A group of nitro compounds contains a benzene ring in a short aliphatic chain with the NO2 group, property that supposedly favors its vasodilator profile. In this study, we evaluated in isolated rat aorta the effects of 1-nitro-2-propylbenzene (NPB), a nitro compound containing the NO2 in the aromatic ring. In aorta precontracted with KCl, NPB (1-3000 μM) induced full endothelium-independent relaxation. In endothelium-intact preparations, phenylephrine-induced contractions were fully relaxed by NPB, effect unaltered by N(ω)-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In the concentration range of 30-300 μM, NPB slight but significantly potentiated the phenylephrine-induced contraction. Such potentiation was unaltered by the thromboxane-prostanoid receptor antagonist seratrodast, but was abolished by endothelium removal or by pre-incubation of endothelium-intact preparations with L-NAME, ODQ or by ruthenium red and HC-030031, blockers of subtype 1 of ankyrin transient receptor potential (TRPA1 ) channels. Verapamil exacerbated the potentiating effect of NPB. The potentiating effect was undetectable in preparations precontracted by 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α (U-46619). Relaxation was reduced by ruthenium red while it was enhanced by HC-030031. In conclusion, NPB has vasodilator properties but with a mechanism of action distinct from its analogues. Contrary to other nitro compounds, its relaxing effects did not involve recruitment of the guanylyl cyclase pathway. NPB has also endothelium-dependent potentiating properties on phenylephrine-induced contractions, a phenomenon that putatively required a role of endothelial TRPA1 channels. The present findings reinforce the notion that the functional group NO2 in the aliphatic chain of these nitro compounds determines favorably their vasodilator properties. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app