Add like
Add dislike
Add to saved papers

Minimax-optimal decoding of movement goals from local field potentials using complex spectral features.

OBJECTIVE: We consider the problem of predicting eye movement goals from local field potentials(LFP) recorded through a multielectrode array in the macaque prefrontal cortex. The monkey is tasked with performing memory-guided saccades to one of eight targets during which LFP activity is recorded and used to train a decoder.

APPROACH: Previous reports have mainly relied on the spectral amplitude of the LFPs as decoding feature, while neglecting the phase without proper theoretical justification.This paper formulates the problem of decoding eye movement intentions in a statistically optimal framework and uses Gaussian sequence modeling and Pinsker's theorem to generate minimax-optimal estimates of the LFP signals which are used as decoding features. The approach is shown to act as a low-pass filter and each LFP in the feature space is represented via its complex Fourier coefficients after appropriate shrinking such that higher frequency components are attenuated; this way, the phase information inherently present in the LFP signal is naturally embedded into the feature space.

MAIN RESULTS: We show that the proposed complex spectrum-based decoder achieves prediction accuracy of up to 94%at superficial cortical depths near the surface of the prefrontal cortex; this marks a significant performance improvement over conventional power spectrum-based decoders.

SIGNIFICANCE: The presented analyses showcase the promising potential of low-pass filtered LFP signals for highly reliable neural decoding of intended motor actions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app