Journal Article
Review
Add like
Add dislike
Add to saved papers

Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity.

Elevated ambient temperatures will likely be a key consequence of climate change over the next few decades. Adverse climatic changes could make crop plants more vulnerable to a number of biotic and abiotic stresses, which would have a major impact on worldwide food production in the future. Recent studies have indicated that elevated temperatures directly and/or indirectly affect plant-pathogen interactions. Elevated temperatures alter multiple signal transduction pathways related to stress responses in the host plant. High temperatures can also influence plant pathogenesis, but little is known about the molecular mechanisms associated with such effects. An improved understanding of the molecular genetic mechanisms involved in plant immune responses under elevated temperatures will be essential to mitigate the adverse effects of climate change to ensure future food security. In this review, we discuss recent advances in our understanding of the effects of temperature on resistance (R) gene and/or regulators of R genes in plant defense responses and summarize current evidence for tradeoffs between plant growth and immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app