Add like
Add dislike
Add to saved papers

Testing the resource tradeoff hypothesis for carotenoid-based signal honesty using genetic variants of the domestic canary.

Carotenoid-based coloration in birds is widely considered an honest signal of individual condition, but the mechanisms responsible for condition dependency in such ornaments remain debated. Currently, the most common explanation for how carotenoid coloration serves as a reliable signal of condition is the resource tradeoff hypothesis, which proposes that use of carotenoids for ornaments reduces their availability for use by the immune system or for protection from oxidative damage. However, two main assumptions of the hypothesis remain in question: whether carotenoids boost the performance of internal processes like immune and antioxidant defenses, and whether allocating carotenoids to ornaments imposes a trade-off with such benefits. In this study, we tested these two fundamental assumptions using types of domestic canary ( Serinus canaria ) that enable experiments in which carotenoid availability and allocation can be tightly controlled. Specifically, we assessed metrics of immune and antioxidant performance in three genetic variants of the color-bred canary that differ only in carotenoid phenotype: ornamented, carotenoid-rich yellow canaries; unornamented, carotenoid-rich "white dominant" canaries; and unornamented, carotenoid-deficient "white recessive" canaries. The resource tradeoff hypothesis predicts that carotenoid-rich individuals should outperform carotenoid-deficient individuals and that birds that allocate carotenoids to feathers should pay a cost in the form of reduced immune function or greater oxidative stress compared to unornamented birds. We found no evidence to support either prediction; all three canary types performed equally across measures. We suggest that testing alternate mechanisms for the honesty of carotenoid-based coloration should be a key focus of future studies of carotenoid-based signaling in birds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app