Add like
Add dislike
Add to saved papers

Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions.

Optics Express 2019 Februrary 19
InGaN-based nanowires (NWs) have been investigated as efficient photoelectrochemical (PEC) water splitting devices. In this work, the InGaN/GaN NWs were grown by molecular beam epitaxy (MBE) having InGaN segments on top of GaN seeds. Three axial heterojunction structures were constructed with different doping types and levels, namely n-InGaN/n-GaN NWs, undoped (u)-InGaN/p-GaN NWs, and p-InGaN/p-GaN NWs. With the carrier concentrations estimated by Mott-Schottky measurements, a PC1D simulation further confirmed the band structures of the three heterojunctions. The u-InGaN/p-GaN and p-InGaN/p-GaN NWs exhibited optimized stability in pH 0 electrolytes for over 10 h with a photocurrent density of about -4.0 and -9.4 mA/cm2 , respectively. However, the hydrogen and oxygen evolution rates of the Pt-treated u-InGaN/p-GaN NWs exhibited a less favorable stoichiometric ratio. On the other hand, the Pt-decorated p-InGaN/p-GaN NWs showed the best PEC performance, generating approximately 1000 µmol/cm2 hydrogen and 550 µmol/cm2 oxygen in 10 h. The band-engineered p-InGaN/p-GaN axial NWs-heterojunction demonstrated a great potential for highly efficient and durable photocathodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app