Add like
Add dislike
Add to saved papers

Enhanced Data Covariance Estimation Using Weighted Combination of multiple Gaussian Kernels for Improved M/EEG Source Localization.

In the recent past, estimating brain activity with magneto/electroencephalography (M/EEG) has been increasingly employed as a noninvasive technique for understanding the brain functions and neural dynamics. However, one of the main open problems when dealing with M/EEG data is its non-Gaussian and nonstationary structure. In this paper, we introduce a methodology for enhancing the data covariance estimation using a weighted combination of multiple Gaussian kernels, termed WM-MK, that relies on the Kullback-Leibler divergence for associating each kernel weight to its relevance. From the obtained results of validation on nonstationary and non-Gaussian brain activity (simulated and real-world EEG data), WM-MK proves that the accuracy of the source estimation raises by more effectively exploiting the measured nonlinear structures with high time and space complexity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app