Add like
Add dislike
Add to saved papers

Shoot chloride translocation as a determinant for NaCl tolerance in Vicia faba L.

Journal of Plant Physiology 2019 Februrary 27
Faba bean (Vicia faba L.) is sensitive to salinity. While toxic effects of sodium (Na+ ) are well studied, toxicity aspects of chloride (Cl- ) and the underlying tolerance mechanisms to Cl- are not well understood. For this reason, shoot Cl- translocation and its effect as potential determinant for tolerance was tested. Diverse V. faba varieties were grown hydroponically and stressed with 100 mM NaCl until necrotic leaf spots appeared. At this point, biomass formation, oxidative damage of membranes as well as Na+ , Cl- and potassium concentrations were measured. The V. faba varieties contrasted in the length of the period they could withstand the NaCl stress treatment. More tolerant varieties survived longer without evolving necrosis and were less affected by inhibitory effects on photosynthesis. The concentration of Cl- at the time point of developing leaf necrosis was in the same range irrespective of the variety, while that of Na+ varied. This indicates that Cl- concentrations, and not Na+ concentrations are critical for the formation of salt necrosis in faba bean. Tolerant varieties profited from lower Cl- translocation to leaves. Therefore, photosynthesis was less affected in those varieties with lower Cl- . This mechanism is a new trait of interest for salt tolerance in V. faba.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app