Add like
Add dislike
Add to saved papers

A Novel Reprocessable and Recyclable Acrylonitrile-Butadiene Rubber Based on Dynamic Oxime-Carbamate Bond.

The covalent cross-linked rubber has outstanding mechanical properties and chemical resistance, making it possible for a wide range of applications. Towards efforts to resource waste and environmental pollution, rubber recycling is a concerning problem. However, it is a big challenge to endow the most widely used commercial rubber systems with recyclability. In this paper, a novel reprocessable and recyclable acrylonitrile-butadiene rubber (NBR) is developed by introducing oxime-carbamate bonds into the raw NBR. Amidoxime NBR is prepared by a nucleophilic addition reaction of hydroxylamine hydrochloride and raw NBR, and then cross-linked amidoxime NBR using different amounts of toluene diisocynate (TDI). Results show that the obtained material exhibits good reprocessable property; the repairing efficiency exceeds 90% after two remoldings. In addition, it also has better mechanical properties: A tensile strength reaching a maximum value of 4.85 MPa when TDI cross-linker is 15.36 wt%, which is superior to vulcanized NBR (3.18 MPa).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app