Add like
Add dislike
Add to saved papers

Fabrication of a Low Adhesive Superhydrophobic Surface on Ti6Al4V Alloys Using TiO₂/Ni Composite Electrodeposition.

Micromachines 2019 Februrary 14
A superhydrophobic surface with low adhesion and good wear resistance was fabricated on Ti6Al4V substrates via TiO₂/Ni composite electrodeposition, and subsequently modified with a fluoroalkylsilane (FAS) film. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical contact angle measurements were used to characterize the surface morphologies, chemical compositions, and surface wettability. The superhydrophobicity of the as-prepared surface results from the fabrication of a hierarchical structure and the assembly of low-surface energy fluorinated components. The as-prepared surface had a water contact angle as high as 162.6° and a sliding angle close to 1.8°. Scratch and abrasion tests showed that the superhydrophobic coating provided a superior wear resistance and stable mechanical abrasion protection. In addition, the influence of processing conditions, such as working voltage, deposited time, pH value, and TiO₂ concentration, was also investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app