Add like
Add dislike
Add to saved papers

Time-correlated model error in the (ensemble) Kalman smoother.

Data assimilation is often performed in a perfect-model scenario, where only errors in initial conditions and observations are considered. Errors in model equations are increasingly being included, but typically using rather adhoc approximations with limited understanding of how these approximations affect the solution and how these approximations interfere with approximations inherent in finite-size ensembles. We provide the first systematic evaluation of the influence of approximations to model errors within a time window of weak-constraint ensemble smoothers. In particular, we study the effects of prescribing temporal correlations in the model errors incorrectly in a Kalman smoother, and in interaction with finite-ensemble-size effects in an ensemble Kalman smoother. For the Kalman smoother we find that an incorrect correlation time-scale for additive model errors can have substantial negative effects on the solutions, and we find that overestimating of the correlation time-scale leads to worse results than underestimating. In the ensemble Kalman smoother case, the resulting ensemble-based space-time gain can be written as the true gain multiplied by two factors, a linear factor containing the errors due to both time-correlation errors and finite ensemble effects, and a nonlinear factor related to the inverse part of the gain. Assuming that both errors are relatively small, we are able to disentangle the contributions from the different approximations. The analysis mean is affected by the time-correlation errors, but also substantially by finite-ensemble effects, which was unexpected. The analysis covariance is affected by both time-correlation errors and an in-breeding term. This first thorough analysis of the influence of time-correlation errors and finite-ensemble-size errors on weak-constraint ensemble smoothers will aid further development of these methods and help to make them robust for e.g. numerical weather prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app