Add like
Add dislike
Add to saved papers

MicroRNA-876-5p inhibits cell proliferation, migration and invasion by targeting c-Met in osteosarcoma.

Recently, aberrant expression of miR-876-5p has been reported to participate in the progression of several human cancers. However, the expression and function of miR-876-5p in osteosarcoma (OS) are still unknown. Here, we found that the expression of miR-876-5p was significantly down-regulated in OS tissues compared to para-cancerous tissues. Clinical association analysis indicated that underexpression of miR-876-5p was positively correlated with advanced clinical stage and poor differentiation. More importantly, OS patients with low miR-876-5p level had a significant shorter overall survival compared to miR-876-5p high-expressing patients. In addition, gain- and loss-of-function experiments demonstrated that miR-876-5p restoration suppressed whereas miR-876-5p knockdown promoted cell proliferation, migration and invasion in both U2OS and MG63 cells. In vivo studies revealed that miR-876-5p overexpression inhibited tumour growth of OS in mice. Mechanistically, miR-876-5p reduced c-Met abundance in OS cells and inversely correlated c-Met expression in OS tissues. Herein, c-Met was recognized as a direct target of miR-876-5p using luciferase reporter assay. Notably, c-Met restoration rescued miR-876-5p attenuated the proliferation, migration and invasion of OS cells. In conclusion, these findings indicate that miR-876-5p may be used as a potential therapeutic target and promising biomarker for the diagnosis and prognosis of OS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app