Add like
Add dislike
Add to saved papers

Biofilm formation and antibiotic resistance in meticillin-resistant and meticillin-sensitive Staphylococcus aureus isolated from burns.

Journal of Wound Care 2019 Februrary 3
OBJECTIVE:: To investigate the relationship between biofilm formation and antibiotic resistance patterns in meticillin-resistant and meticillin-sensitive Staphylococcus aureus, isolated from burns.

METHODS:: In a cross-sectional study, pus/wound swab samples were obtained from burns. Presence of Staphylococcus aureus was confirmed, and biofilm formation-related icaABCDR and eta, etb genes were detected by polymerase chain reaction. Biofilm formation assay was assessed using the microtiter plate method. Antibiotic resistance was performed using the disk diffusion method and minimum inhibitory concentration.

RESULTS:: A total of 95 patients with burns were recruited. Of the 95 wounds swabbed, Staphylococcus aureus was identified in 50 (62.5%), and 47 (94%) isolates capable of producing biofilm. Biofilm production levels were classed as 'strong' (n=29; 58%), 'moderate' (n=11; 22%), 'weak' (n=7; 14%) and 'non-biofilm forming' (n=3; 6%). There was an almost even split between isolates identified as meticillin-resistant Staphylococcus aureus (MRSA), n=24 (48%), and meticillin-sensitive Staphylococcus aureus (MSSA) n=26 (52%). The prevalence of the icaA, icaB, icaC, icaD and icaR genes among the studied isolates were 96%, 80%, 80%, 96% and 84%, respectively. The prevalence of eta and etb genes in isolates were 84% and 92%, respectively.

CONCLUSION:: Biofilm producing isolates of Staphylococcus aureus showed greater multidrug resistance than non-biofilm producers. In our study, a high rate of biofilm formation and antimicrobial drug resistance was seen. Our results highlight the alarming levels of antimicrobial resistance among MRSA strains and important data about the prevalence of eta and etb genes in Staphylococcus aureus strains isolated from burn patients in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app