Add like
Add dislike
Add to saved papers

Modular DNA-based hybrid catalysts as a toolbox for enantioselective hydration of α,β-unsaturated ketones.

The direct addition of water to a carbon-carbon double bond remains a challenge, but such a reaction is essential for the development of efficient catalysts that enable direct access to chiral alcohols. We now report on the enantioselective hydration of α,β-unsaturated ketones, catalyzed by modular DNA-based hybrid catalysts, affording β-hydroxy ketones with up to 87% enantiomeric excess. Oligonucleotides containing an intrastrand bipyridine ligand were readily synthesized by a straightforward process using an automated solid-phase synthesis. A library of DNA-based hybrid catalysts could be systematically generated based on the composition of nucleobases, and the incorporation of a binding ligand and a nonbinding steric moiety. This study demonstrates the potential of modular DNA-based hybrid catalysts as a toolbox to accomplish the challenging enantioselective hydration reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app