Add like
Add dislike
Add to saved papers

Gas adsorption at metal sites for enhancing gas sensing performance of ZnO@ZIF-71 nanorod arrays.

The detection of trace amount of volatile organic compounds (VOCs) has been covered by tons of researches, which are dedicated to improve the detection limit and insensitivity to humidity. In this work, we have synthesized ZnO@ZIF-71 nanorod arrays (NRAs) equipped with the adsorption effect at metal site that promoted the detection limit of ethanol and acetone, to which also have great selectivity. The gas sensor not only exhibits shorter response/recovery time (53/55% for ethanol, 48/31% for acetone), but also excellent insensitivity to humidity and improved detection limit (10 times improved at 21 ppb for ethanol, 4 times at 3 ppb for acetone) at low working temperature (150 °C). By the analysis of in-situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and calculation of density functional theory (DFT), the mechanism of enhanced gas sensing performance from ZnO@ZIF-71 NRAs is proved. It shows ethanol and acetone gas molecules can be adsorbed at the metal sites of ZIF-71. This work provides a new idea to improve the detection limit and humidity-insensitivity of gas sensor towards specific gas molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app