Add like
Add dislike
Add to saved papers

Salinipeptins: Integrated genomic and chemical approaches reveal unusual D-amino acid-containing ribosomally synthesized and post-translationally modified peptides (RiPPs) from a Great Salt Lake Streptomyces sp.

ACS Chemical Biology 2019 Februrary 13
Analysis of the full genome of an environmentally-unique, halotolerant Streptomyces sp. strain GSL-6C, isolated from the Great Salt Lake, revealed a gene cluster encoding the biosynthesis of the salinipeptins, D-amino acid containing members of the rare linaridin subfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). The sequence organization of the unmodified amino acid residues in salinipeptins A-D (1-4) were suggested by genome annotation, and subsequently their sequence and post-translational modifications were defined using a range of spectroscopic techniques and chemical derivatization approaches. The salinipeptins are unprecedented linaridins bearing nine D-amino acids, which are uncommon in RiPP natural products and are the first reported in the linaridin subfamily. Whole genome mining of GSL-6C did not reveal any homologs of the reported genes responsible for amino acid epimerization in RiPPs, inferring new epimerases may be involved in the conversion of L- to D-amino acids. In addition, the N-oxide and dimethylimidazolidin-4-one moieties in salinipeptins B and C, which are modified from N,N-dimethylalanine, are unknown in bacterial peptides. The three-dimensional structure of salinipeptin A, possessing four loops generated by significant hydrogen bonding, was established based on observed nuclear Overhauser effect (NOE) correlations. This study demonstrates that integration of genomic information early in chemical analysis significantly facilitates the discovery and structure characterization of novel microbial secondary metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app