Add like
Add dislike
Add to saved papers

Influence of pH and micellar systems on the sensitized photo-oxidation of bovine serum albumin.

Photosensitized oxidation of bovine serum albumin (BSA), by using perinaphtenone as a sensitizer, has been studied at pH 7.4 and 11. The selected sensitizer does not present ground-state complexation with BSA and ensures that the mechanism is mediated by O2 (1 △g ). Strong dependence between BSA-O2 (1 △g ) photo-oxidation and the pH of the medium has been found. The relative oxygen uptake rate (v- △ O2 ) and the total quenching rate constant (kt ) values are higher at pH 11 than pH 7.4. The enhancement in the alkaline condition is due to conformational changes in the protein and the reactivity of tyrosinate anion with O2 (1 △g ). Even when the tendency with the pH in the presence of sodium dodecyl sulfate (SDS) micelles is similar to that observed in homogeneous media, an increment on the kt value is detected. This effect may be attributable to the strong interaction of BSA-SDS, which leads to the protein unfolding and could leave more exposed photo-oxidizable amino acids. A protective effect against the O2 (1 △g )-mediated photo-oxidation was observed in reverse micelles (RMs) of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) by comparing the kt values obtained at W = 10 with respect to the one obtain in homogeneous media. The latter could be mainly explained by the modification in the solvent polarity. Also, another important observation was found, the internal pH inside RMs of AOT sensed through tyrosine absorption was independent of the one used for the formation of the water pool. Hence, the kt values observed at both pH, are quite similar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app