Add like
Add dislike
Add to saved papers

Mass Spectrometry-Based Profiling of Metabolites in Human Biofluids.

Cancer poses a daunting challenge to researchers and clinicians alike. Early diagnosis, accurate prognosis, and prediction of therapeutic response remain elusive in most types of cancer. In addition, lacunae in our understanding of cancer biology continue to hinder advancement of therapeutic strategies. Metabolic reprogramming has been identified as integral to pathogenesis and progression of the disease. Consequently, analysis of biofluid metabolome has emerged as a promising approach to further our understanding of disease biology as well as to identify cancer biomarkers. However, unbiased identification of robust and meaningful differences in metabolic signatures remains a non-trivial task. This chapter describes a generalized strategy for global metabolic profiling of human biofluids using ultra-performance liquid chromatography (UPLC) and mass spectrometry, which together offer a sensitive, high-throughput, and versatile platform. A step-by-step protocol for performing untargeted metabolic profiling of urine and serum (or plasma), using hydrophilic interaction liquid chromatography (HILIC) or reverse-phase (RP) chromatography coupled with electrospray ionization mass spectrometry (ESI-MS) to multivariate data analysis and identification of metabolites of interest has been detailed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app