Add like
Add dislike
Add to saved papers

The interaction between cellobiose dehydrogenase and lytic polysaccharide monooxygenase.

Biochemistry 2019 Februrary 5
Lytic polysaccharide monooxygenases (LPMOs) are ubiquitous oxidoreductases, facilitating the degradation of polymeric carbohydrates in biomass. Cellobiose dehydrogenase (CDH) is a biologically relevant electron donor in this process, with the electrons resulting from cellobiose oxidation being shuttled from the CDH dehydrogenase domain to its cytochrome domain and then to the LPMO catalytic site. In the current work, we investigate the interaction of four Neurospora crassa LPMOs and five CDH cytochrome domains from different species using computational methods. We used HADDOCK to perform protein-protein docking experiments on all 20 combinations and subsequently select four complexes for extensive molecular dynamics simulations. The potential of mean force is computed for a rotation of the cytochrome domain relative to LPMO. We find that the LPMO loops are largely responsible for the preferred orientations of the cytochrome domains. This leads us to postulate a hybrid version of NcLPMO9F, with exchanged loops and predicted altered cytochrome binding preferences for this variant. Our work gives insight into the possible mechanisms of electron transfer between the two protein systems, in agreement with and complementary to previously published experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app