Journal Article
Review
Add like
Add dislike
Add to saved papers

Application of genetics and biotechnology for improving medicinal plants.

Planta 2019 April
MAIN CONCLUSION: Plant tissue culture has been used for conservation, micropropagation, and in planta overproduction of some pharma molecules of medicinal plants. New biotechnology-based breeding methods such as targeted genome editing methods are able to create custom-designed medicinal plants with different secondary metabolite profiles. For a long time, humans have used medicinal plants for therapeutic purposes and in food and other industries. Classical biotechnology techniques have been exploited in breeding medicinal plants. Now, it is time to apply faster biotechnology-based breeding methods (BBBMs) to these valuable plants. Assessment of the genetic diversity, conservation, proliferation, and overproduction are the main ways by which genetics and biotechnology can help to improve medicinal plants faster. Plant tissue culture (PTC) plays an important role as a platform to apply other BBBMs in medicinal plants. Agrobacterium-mediated gene transformation and artificial polyploidy induction are the main BBBMs that are directly dependent on PTC. Manageable regulation of endogens and/or transferred genes via engineered zinc-finger proteins or transcription activator-like effectors can help targeted manipulation of secondary metabolite pathways in medicinal plants. The next-generation sequencing techniques have great potential to study the genetic diversity of medicinal plants through restriction-site-associated DNA sequencing (RAD-seq) technique and also to identify the genes and enzymes that are involved in the biosynthetic pathway of secondary metabolites through precise transcriptome profiling (RNA-seq). The sequence-specific nucleases of transcription activator-like effector nucleases (TALENs), zinc-finger nucleases, and clustered regularly interspaced short palindromic repeats-associated (Cas) are the genome editing methods that can produce user-designed medicinal plants. These current targeted genome editing methods are able to manage plant synthetic biology and open new gates to medicinal plants to be introduced into appropriate industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app