Add like
Add dislike
Add to saved papers

Surface Diffusion of Fe and Cu on Fe (001) Under Electric Field Using First-Principles Calculations.

First-principles calculations were performed to determine the Fe on Fe (001) evaporation field and to characterize the surface diffusion of Fe and Cu on Fe (001) and on a step structure under an applied electric field. The evaporation field of Fe on Fe (001) was calculated by the nudged elastic band (NEB) method, using the combination of the effective screening medium and constant electrode potential methods to obtain a condition of constant electric field. The calculated evaporation field of Fe on Fe (001) was 32.4 V/nm, which agrees well with the experimental value. In the surface diffusion of Fe and Cu on Fe (001) and on a step structure, the activation barrier energies were determined by the NEB method with constant applied electric field. It was found that Cu diffuse more easily on the Fe (001) and step structure than Fe under an applied electric field. The activation barrier energy of surface diffusion in the saddle point configuration is small when the distance between Cu and Fe on the surface is larger, and the activation barrier energy becomes smaller when passing through a path far away from the surface due to the effect of the electric field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app