Add like
Add dislike
Add to saved papers

Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text.

BACKGROUND: Extracting relations between important clinical entities is critical but very challenging for natural language processing (NLP) in the medical domain. Researchers have applied deep learning-based approaches to clinical relation extraction; but most of them consider sentence sequence only, without modeling syntactic structures. The aim of this study was to utilize a deep neural network to capture the syntactic features and further improve the performances of relation extraction in clinical notes.

METHODS: We propose a novel neural approach to model shortest dependency path (SDP) between target entities together with the sentence sequence for clinical relation extraction. Our neural network architecture consists of three modules: (1) sentence sequence representation module using bidirectional long short-term memory network (Bi-LSTM) to capture the features in the sentence sequence; (2) SDP representation module implementing the convolutional neural network (CNN) and Bi-LSTM network to capture the syntactic context for target entities using SDP information; and (3) classification module utilizing a fully-connected layer with Softmax function to classify the relation type between target entities.

RESULTS: Using the 2010 i2b2/VA relation extraction dataset, we compared our approach with other baseline methods. Our experimental results show that the proposed approach achieved significant improvements over comparable existing methods, demonstrating the effectiveness of utilizing syntactic structures in deep learning-based relation extraction. The F-measure of our method reaches 74.34% which is 2.5% higher than the method without using syntactic features.

CONCLUSIONS: We propose a new neural network architecture by modeling SDP along with sentence sequence to extract multi-relations from clinical text. Our experimental results show that the proposed approach significantly improve the performances on clinical notes, demonstrating the effectiveness of syntactic structures in deep learning-based relation extraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app